Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{ZnTe}_{6} \mathrm{O}_{13}$, a new $\mathrm{ZnO}-\mathrm{TeO}_{2}$ phase

Jalal M. Nawash, ${ }^{\text {a }}$ Brendan Twamley ${ }^{\text {b }}$ * and Kelvin G. Lynn ${ }^{\text {a }}$

${ }^{\text {a }}$ Center for Materials Research, Materials Science Program, Washington State University, Pullman, WA 99164, USA, and ${ }^{\text {b }}$ University Research Office, University of Idaho, Box 443010, Moscow, ID 83844-3010, USA
Correspondence e-mail: btwamley@uidaho.edu

Received 18 May 2007
Accepted 5 June 2007
Online 14 July 2007
Our investigations into the $\mathrm{ZnO}-\mathrm{TeO}_{2}$ system have produced a new phase, zinc(II) hexatellurium(IV) tridecaoxide, $\mathrm{ZnTe}_{6} \mathrm{O}_{13}$, with trigonal ($R \overline{3}$) symmetry, synthesized by repeated heating and cooling to a maximum temperature of 1053 K . The asymmetric unit consists of a Zn atom coordinated in a distorted octahedral fashion by two unique tellurium(IV) oxide units that form trigonal-bipyramidal TeO_{4} and TeO_{3+1} corner- and edge-shared polyhedra. Except for the Zn and an O atom, which occupy $6 c$ positions, all atoms occupy $18 f$ general positions.

Comment

The established phase diagram of the $\mathrm{ZnO}-\mathrm{TeO}_{2}$ system has three crystalline compositions, viz. ZnTeO_{3} (Hanke, 1967) at low TeO_{2} mole percent, $\mathrm{Zn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$ (Hanke, 1966) at higher TeO_{2} mole percent, and the recently reported $\mathrm{Zn}_{3} \mathrm{TeO}_{6}$ (Weil, 2006). Glassy compositions are of current electronic and photonic research interest (e.g. Nukui, 2001; Bürger et al., 1992; Öveçoğlu et al., 2004). The title compound, (I), was obtained unexpectedly by repeated melting and cooling of the 21:79 mole percent $\mathrm{ZnO}-\mathrm{TeO}_{2}$ mixture normally used to produce the mixed-phase TeO_{2} and $\mathrm{Zn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$. This mole percent is used to achieve the lowest melting mixture at the eutectic point and reduces the evaporation of TeO_{2} during the melt. The additional melting cycles (the last at very high temperature), as well as the additional cooling under an O_{2} flow, may have contributed to the formation of the new $\mathrm{ZnTe}_{6} \mathrm{O}_{13}$ phase.

The space group of (I), according to systematic absences, may be $R 3, R \overline{3}, R 32, R 3 m$ or $R \overline{3} m$; however, subsequent structure and least-squares refinement indicated that the correct space group is $R \overline{3}$. Fig. 1 shows the full coordination environment around each metal center. There are two unique $\mathrm{Te}^{\mathrm{IV}}$ atoms in the asymmetric unit and the complete coordination environment around each is generated by symmetry [Te1, symmetry code: (i) $-x+\frac{2}{3},-y+\frac{1}{3},-z+\frac{1}{3}, \mathrm{O} 2$; Te 2 , symmetry code: (ii) $-y+1, x-y+1, z, \mathrm{O} 4$; see Table 1]. Both are four-coordinate trigonal-bipyramidal (tbp), i.e. TeO_{4}, with
a stereochemically active lone pair of electrons, a common motif in tellurate(IV) structures. The environment around Te 1

(I)
(see Table 1), although compressed, is similar to that in $\alpha-\mathrm{TeO}_{2}[\mathrm{Te}-\mathrm{O}=1.919$ and $2.087 \AA$, and apical $\mathrm{O}-\mathrm{Te}-\mathrm{O}=$ 163.9° (Leciejewicz, 1961); $\mathrm{Te}-\mathrm{O}=1.903$ (20) and 2.082 (23) \AA, and apical $\mathrm{O}-\mathrm{Te}-\mathrm{O}=168.5(13)^{\circ}$ (Lindqvist, 1968)]. However, the coordination around Te 2 is similar to the TeO_{3+1} coordination found in $\mathrm{ZnTe}_{3} \mathrm{O}_{8}, \mathrm{CuTe}_{2} \mathrm{O}_{5}$ (Hanke et al., 1973) and $\mathrm{CuTe}_{3} \mathrm{O}_{8}$ (Feger et al., 1999), with three similar $\mathrm{Te}-\mathrm{O}$ distances and the fourth significantly longer (see Table 1). In (I), the tbp TeO_{4} polyhedra are both corner linked equatorial to apical for both $\mathrm{Te} 1-\mathrm{Te} 2$ and $\mathrm{Te} 2-\mathrm{Te} 2$ polyhedra, and edged shared for $\mathrm{Te} 1-\mathrm{Te} 1$ polyhedra. Corner-sharing TeO_{4} polyhedra are seen in $\alpha-\mathrm{TeO}_{2}$, but both corner- and edged-shared TeO_{4} polyhedra are seen in ZnTeO_{3} and $\mathrm{ZnTe}_{3} \mathrm{O}_{8}$.

The coordination environment around the unique Zn atom after symmetry generation (see Table 1) is a highly distorted octahedron with trans $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ angles of ca 163°. Three of the O atoms are corner linked to Te 1 polyhedra and the other three are corner linked to Te 2 polyhedra, all to equatorial O atoms. Three Te 2 units and atom Zn 1 form an adamantyl-type substructure. Three Te 1 units and atom Zn 1 form a 'paddle

Figure 1
The full coordination environment around each unique metal center in the asymmetric unit of (I). Symmetry codes are as given in Table 1.
wheel' arrangement with oxygen-bridged $\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 2$ atoms (see Fig. 2). The complete packing superstructure consists of a bilayer of tellurium oxide linked by the $\mathrm{Te} 1-\mathrm{O} 2$ bridging units. These bilayers are connected via the Zn atoms.

The bulk material was examined by powder X-ray diffraction. The pattern, shown in Fig. 3, indicates that there is a mixture of phases compared with the calculated pure phase, $\mathrm{ZnTe}_{6} \mathrm{O}_{13}$, which is shown as an overlay. A simulated powder pattern using CrystalDiffract (Palmer, 2007) shows that the bulk composition consists of $54: 46 \% \mathrm{ZnTe}_{6} \mathrm{O}_{13} / \mathrm{Zn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$, with no occurrence of $\alpha-\mathrm{TeO}_{2}$. The composition of the new phase was also confirmed using a Camebax MBX electronprobe microanalyzer with wavelength dispersive spectroscopy

Figure 2
The partial unit cell (coordination completed) drawn parallel to the hexagonal axis [001], showing the arrangement of the tbp TeO_{4} units.

Figure 3
Powder X-ray diffraction overlay pattern for bulk composition (lower scan), calculated mixed composition (middle scan) and calculated pure $\mathrm{ZnTe}_{6} \mathrm{O}_{13}$ phase (upper scan) using $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

Figure 4
A representative backscattered electron image. The black background is the glass substrate. The pale-gray (yellow in the electronic version of the paper) area is $\mathrm{ZnTe}_{6} \mathrm{O}_{13}$ and the mid-gray (brown) area is $\mathrm{Zn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$ (composition confirmed by WDS).
(WDS) on polished sections. Compositional distribution between (I) and $\mathrm{Zn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$ is shown in a backscattered electron image in Fig. 4.

Experimental

ZnO and TeO_{2} powders (Alpha Aesar, 99.999% purity) were mixed in a $\mathrm{ZnO}: \mathrm{TeO}_{2}$ mole percentage of $21: 79 \%$ using a jar mill with a total average mixing time of 15 h . The mixed powder was placed in a platinum crucible and calcined. The calcined powder was melted and frozen in a radiofrequency furnace several times with (a) a maximum temperature of 939 K and a cooling rate of $7 \mathrm{~K} \mathrm{~h}^{-1}$ in air with an O_{2} flow, (b) a maxmimum temperature of 958 K and a cooling rate of $12 \mathrm{~K} \mathrm{~h}^{-1}$ in air only, (c) a maximum temperature of 923 K and a cooling rate of $30 \mathrm{~K} \mathrm{~h}^{-1}$ in air, and (d) a maximum temperature of 1053 K and a cooling rate of $48 \mathrm{~K} \mathrm{~h}^{-1}$ in air, and finally cooled at a rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$ with an axial temperature gradient of $60 \mathrm{~K} \mathrm{~cm}^{-1}$ (Bridgman technique: Stockbarger, 1936; King et al., 1996; Rajendran \& Mellen, 1987) to room temperature.

Crystal data

$\mathrm{ZnTe}_{6} \mathrm{O}_{13}$
$M_{r}=1038.97$
Trigonal, $R \overline{3}$
$a=10.1283$ (9) \AA
$c=18.948$ (3) \AA
$V=1683.3(3) \AA^{3}$

Data collection

Bruker-Siemens SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.204, T_{\text {max }}=0.705$

$$
Z=6
$$

Mo $K \alpha$ radiation
$\mu=17.55 \mathrm{~mm}^{-1}$
$T=86$ (2) K
$0.13 \times 0.06 \times 0.02 \mathrm{~mm}$

> 8273 measured reflections 679 independent reflections 659 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$	62 parameters
$w R\left(F^{2}\right)=0.060$	6 restraints
$S=1.12$	$\Delta \rho_{\max }=0.73 \mathrm{e} \AA^{-3}$
679 reflections	$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-Te1	2.1244 (7)	$\mathrm{Te} 2-\mathrm{O} 4^{\text {ii }}$	2.026 (4)
$\mathrm{O} 2-\mathrm{Te} 1$	1.936 (4)	O5-Zn1	2.061 (4)
$\mathrm{O} 2-\mathrm{Te} 1^{\mathrm{i}}$	2.168 (4)	$\mathrm{Zn} 1-\mathrm{O} 5^{\text {ii }}$	2.061 (4)
$\mathrm{O} 3-\mathrm{Te} 1$	1.851 (4)	$\mathrm{Zn} 1-\mathrm{O} 5^{\text {iii }}$	2.061 (4)
$\mathrm{O} 3-\mathrm{Te} 2$	2.204 (4)	$\mathrm{Zn} 1-\mathrm{O} 2^{\text {iv }}$	2.175 (4)
$\mathrm{O} 4-\mathrm{Te} 2$	1.922 (4)	$\mathrm{Zn} 1-\mathrm{O} 2^{\text {v }}$	2.175 (4)
$\mathrm{O} 5-\mathrm{Te} 2$	1.857 (4)	$\mathrm{Zn} 1-\mathrm{O} 2^{\text {vi }}$	2.175 (4)
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O} 2$	101.77 (18)	$\mathrm{O} 5^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 2{ }^{\text {iv }}$	99.42 (17)
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 2^{\text {i }}$	154.71 (18)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O}^{\text {iv }}$	75.45 (17)
$\mathrm{O} 5-\mathrm{Te} 2-\mathrm{O} 4^{\text {ii }}$	94.34 (17)	$\mathrm{O} 5-\mathrm{Zn} 1-\mathrm{O} 2^{\text {iv }}$	162.97 (17)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Te} 2-\mathrm{O} 3$	176.87 (16)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 2^{\text {v }}$	162.97 (17)
O5 ${ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 5$	96.17 (15)	$\mathrm{O} 5^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 2{ }^{\text {vi }}$	162.97 (17)
$\mathrm{O} 5{ }^{\text {iiii }}-\mathrm{Zn} 1-\mathrm{O} 5$	96.17 (15)		

Symmetry codes: (i) $-x+\frac{2}{3},-y+\frac{1}{3},-z+\frac{1}{3}$; (ii) $-y+1, x-y+1, z$; (iii) $-x+y$, $-x+1, z$; (iv) $-y+\frac{1}{3}, x-y+\frac{2}{3}, z-\frac{1}{3}$; (v) $x+\frac{1}{3}, y+\frac{2}{3}, z-\frac{1}{3}$; (vi) $-x+y+\frac{1}{3},-x+\frac{2}{3}$, $z-\frac{1}{3}$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: $X S$ in SHELXTL (Bruker, 2003); program(s) used to refine structure: $X L$ in $S H E L X T L$; molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors are grateful to Scott B. Cornelius for his assistance in microprobe measurements. The diffraction facility was established at the University of Idaho with the
assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA, USA. This research was sponsored by Space Missile and Defense Command (SMDC), contract No. DASG60-02-C-0084.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ3022). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1998). DIAMOND. Version 3.0. Crystal Impact GbR, Bonn, Germany.
Bruker (2002). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SMART (Version 5.630), SAINT-Plus (Version 6.45a) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Bürger, H., Kneipp, K., Hobert, H. \& Vogel, W. (1992). J. Non-Cryst. Solids, 151, 134-142.
Feger, C. R., Schimek, G. L. \& Kolis, J. W. (1999). J. Solid State Chem. 143, 246253.

Hanke, K. (1966). Naturwissenschaften, 53, 273-273.
Hanke, K. (1967). Naturwissenschaften, 54, 199-199.
Hanke, K., Kupčik, V. \& Lindqvist, O. (1973). Acta Cryst. B29, 963-970.
King, S. E., Dietrich, H. B., Henry, R. L., Katzer, D. S., Moore, W. J., Philips, G. W. \& Mania, R. C. (1996). IEEE Trans. Nucl. Sci. 43, 1376-1380.

Leciejewicz, J. (1961). Z. Kristallogr. 116, 345-353.
Lindqvist, O. (1968). Acta Chem. Scand. 22, 977-982.
Nukui, A. (2001). J. Non-Cryst. Solids, 255, 293-295.
Öveçoğlu, M. L., Özalp, M. R., Özen, G., Alten, F. \& Kalem, V. (2004). Key Eng. Mater. 264-268, 1891-1894.
Palmer, D. C. (2007). CrystalDiffract. Version 1.1.2. Crystalmaker Software Ltd, Oxfordshire, England.
Rajendran, S. \& Mellen, R. (1987). J. Cryst. Growth, 85, 130-135.
Stockbarger, D. C. (1936). Rev. Sci. Instrum. 7, 133-136.
Weil, M. (2006). Acta Cryst. E62, i246-i247.
Westrip, S. P. (2007). publCIF. In preparation.

