inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

ZnTe₆O₁₃, a new ZnO-TeO₂ phase

Jalal M. Nawash,^a Brendan Twamley^b* and Kelvin G. Lynn^a

^aCenter for Materials Research, Materials Science Program, Washington State University, Pullman, WA 99164, USA, and ^bUniversity Research Office, University of Idaho, Box 443010, Moscow, ID 83844-3010, USA Correspondence e-mail: btwamley@uidaho.edu

Received 18 May 2007 Accepted 5 June 2007 Online 14 July 2007

Our investigations into the ZnO–TeO₂ system have produced a new phase, zinc(II) hexatellurium(IV) tridecaoxide, ZnTe₆O₁₃, with trigonal ($R\overline{3}$) symmetry, synthesized by repeated heating and cooling to a maximum temperature of 1053 K. The asymmetric unit consists of a Zn atom coordinated in a distorted octahedral fashion by two unique tellurium(IV) oxide units that form trigonal–bipyramidal TeO₄ and TeO₃₊₁ corner- and edge-shared polyhedra. Except for the Zn and an O atom, which occupy 6*c* positions, all atoms occupy 18*f* general positions.

Comment

The established phase diagram of the ZnO-TeO₂ system has three crystalline compositions, viz. ZnTeO₃ (Hanke, 1967) at low TeO₂ mole percent, Zn₂Te₃O₈ (Hanke, 1966) at higher TeO_2 mole percent, and the recently reported Zn_3TeO_6 (Weil, 2006). Glassy compositions are of current electronic and photonic research interest (e.g. Nukui, 2001; Bürger et al., 1992; Öveçoğlu et al., 2004). The title compound, (I), was obtained unexpectedly by repeated melting and cooling of the 21:79 mole percent ZnO-TeO₂ mixture normally used to produce the mixed-phase TeO₂ and Zn₂Te₃O₈. This mole percent is used to achieve the lowest melting mixture at the eutectic point and reduces the evaporation of TeO₂ during the melt. The additional melting cycles (the last at very high temperature), as well as the additional cooling under an O₂ flow, may have contributed to the formation of the new $ZnTe_6O_{13}$ phase.

The space group of (I), according to systematic absences, may be R3, R3, R32, R3m or R3m; however, subsequent structure and least-squares refinement indicated that the correct space group is R3. Fig. 1 shows the full coordination environment around each metal center. There are two unique Te^{IV} atoms in the asymmetric unit and the complete coordination environment around each is generated by symmetry [Te1, symmetry code: (i) $-x + \frac{2}{3}, -y + \frac{1}{3}, -z + \frac{1}{3}$, O2; Te2, symmetry code: (ii) -y + 1, x - y + 1, z, O4; see Table 1]. Both are four-coordinate trigonal-bipyramidal (tbp), *i.e.* TeO₄, with a stereochemically active lone pair of electrons, a common motif in tellurate(IV) structures. The environment around Te1

(see Table 1), although compressed, is similar to that in α -TeO₂ [Te-O = 1.919 and 2.087 Å, and apical O-Te-O = 163.9° (Leciejewicz, 1961); Te-O = 1.903 (20) and 2.082 (23) Å, and apical O-Te-O = 168.5 (13)° (Lindqvist, 1968)]. However, the coordination around Te2 is similar to the TeO₃₊₁ coordination found in ZnTe₃O₈, CuTe₂O₅ (Hanke *et al.*, 1973) and CuTe₃O₈ (Feger *et al.*, 1999), with three similar Te-O distances and the fourth significantly longer (see Table 1). In (I), the tbp TeO₄ polyhedra are both corner linked equatorial to apical for both Te1-Te2 and Te2-Te2 polyhedra, and edged shared for Te1-Te1 polyhedra. Corner-sharing TeO₄ polyhedra are seen in α -TeO₂, but both corner- and edged-shared TeO₄ polyhedra are seen in ZnTeO₃ and ZnTe₃O₈.

The coordination environment around the unique Zn atom after symmetry generation (see Table 1) is a highly distorted octahedron with *trans* O-Zn-O angles of *ca* 163°. Three of the O atoms are corner linked to Te1 polyhedra and the other three are corner linked to Te2 polyhedra, all to equatorial O atoms. Three Te2 units and atom Zn1 form an adamantyl-type substructure. Three Te1 units and atom Zn1 form a 'paddle

The full coordination environment around each unique metal center in the asymmetric unit of (I). Symmetry codes are as given in Table 1.

wheel' arrangement with oxygen-bridged O2-Te1-O2 atoms (see Fig. 2). The complete packing superstructure consists of a bilayer of tellurium oxide linked by the Te1-O2 bridging units. These bilayers are connected *via* the Zn atoms.

The bulk material was examined by powder X-ray diffraction. The pattern, shown in Fig. 3, indicates that there is a mixture of phases compared with the calculated pure phase, $ZnTe_6O_{13}$, which is shown as an overlay. A simulated powder pattern using *CrystalDiffract* (Palmer, 2007) shows that the bulk composition consists of 54:46% $ZnTe_6O_{13}/Zn_2Te_3O_8$, with no occurrence of α -TeO₂. The composition of the new phase was also confirmed using a Camebax MBX electronprobe microanalyzer with wavelength dispersive spectroscopy

Figure 2

The partial unit cell (coordination completed) drawn parallel to the hexagonal axis [001], showing the arrangement of the tbp TeO_4 units.

Figure 3

Powder X-ray diffraction overlay pattern for bulk composition (lower scan), calculated mixed composition (middle scan) and calculated pure $ZnTe_6O_{13}$ phase (upper scan) using Cu $K\alpha$ radiation.

Figure 4

A representative backscattered electron image. The black background is the glass substrate. The pale-gray (yellow in the electronic version of the paper) area is $ZnTe_6O_{13}$ and the mid-gray (brown) area is $Zn_2Te_3O_8$ (composition confirmed by WDS).

(WDS) on polished sections. Compositional distribution between (I) and $Zn_2Te_3O_8$ is shown in a backscattered electron image in Fig. 4.

Experimental

ZnO and TeO₂ powders (Alpha Aesar, 99.999% purity) were mixed in a ZnO:TeO₂ mole percentage of 21:79% using a jar mill with a total average mixing time of 15 h. The mixed powder was placed in a platinum crucible and calcined. The calcined powder was melted and frozen in a radiofrequency furnace several times with (*a*) a maximum temperature of 939 K and a cooling rate of 7 K h⁻¹ in air with an O₂ flow, (*b*) a maxmimum temperature of 958 K and a cooling rate of 12 K h⁻¹ in air only, (*c*) a maximum temperature of 923 K and a cooling rate of 30 K h⁻¹ in air, and (*d*) a maximum temperature of 1053 K and a cooling rate of 48 K h⁻¹ in air, and finally cooled at a rate of 2 K h⁻¹ with an axial temperature gradient of 60 K cm⁻¹ (Bridgman technique: Stockbarger, 1936; King *et al.*, 1996; Rajendran & Mellen, 1987) to room temperature.

Crystal data

 Zn Te₆O₁₃
 Z = 6

 $M_r = 1038.97$ Mo K α radiation

 Trigonal, $R\overline{3}$ $\mu = 17.55 \text{ mm}^{-1}$

 a = 10.1283 (9) Å T = 86 (2) K

 c = 18.948 (3) Å 0.13 × 0.06 × 0.02 mm

 $V = 1683.3 (3) \text{ Å}^3$ V

Data collection

- Bruker-Siemens SMART APEX diffractometer
- Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.204, T_{max} = 0.705$

8273 measured reflections 679 independent reflections 659 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.060$ S = 1.12679 reflections $\begin{array}{l} 62 \text{ parameters} \\ 6 \text{ restraints} \\ \Delta \rho_{\max} = 0.73 \text{ e } \text{ } \text{\AA}^{-3} \\ \Delta \rho_{\min} = -0.69 \text{ e } \text{ } \text{\AA}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å, °).

O1-Te1	2.1244 (7)	Te2-O4 ⁱⁱ	2.026 (4)
O2-Te1	1.936 (4)	O5-Zn1	2.061 (4)
O2-Te1 ⁱ	2.168 (4)	Zn1-O5 ⁱⁱ	2.061 (4)
O3-Te1	1.851 (4)	Zn1-O5 ⁱⁱⁱ	2.061 (4)
O3-Te2	2.204 (4)	$Zn1-O2^{iv}$	2.175 (4)
O4-Te2	1.922 (4)	$Zn1-O2^{v}$	2.175 (4)
O5-Te2	1.857 (4)	$Zn1-O2^{vi}$	2.175 (4)
O3-Te1-O2	101.77 (18)	$O5^{ii}$ -Zn1- $O2^{iv}$	99.42 (17)
$O1-Te1-O2^{i}$	154.71 (18)	O5 ⁱⁱⁱ -Zn1-O2 ^{iv}	75.45 (17)
O5-Te2-O4 ⁱⁱ	94.34 (17)	O5-Zn1-O2 ^{iv}	162.97 (17)
O4 ⁱⁱ -Te2-O3	176.87 (16)	$O5^{iii}$ -Zn1-O2 ^v	162.97 (17)
O5 ⁱⁱ -Zn1-O5	96.17 (15)	O5 ⁱⁱ -Zn1-O2 ^{vi}	162.97 (17)
O5 ⁱⁱⁱ -Zn1-O5	96.17 (15)		
			<u> </u>

Symmetry codes: (i) $-x + \frac{2}{3}, -y + \frac{1}{3}, -z + \frac{1}{3}$; (ii) -y + 1, x - y + 1, z; (iii) -x + y, -x + 1, z; (iv) $-y + \frac{1}{3}, x - y + \frac{2}{3}, z - \frac{1}{3}$; (v) $x + \frac{1}{3}, y + \frac{2}{3}, z - \frac{1}{3}$; (vi) $-x + y + \frac{1}{3}, -x + \frac{2}{3}, z - \frac{1}{3}$.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *XS* in *SHELXTL* (Bruker, 2003); program(s) used to refine structure: *XL* in *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors are grateful to Scott B. Cornelius for his assistance in microprobe measurements. The diffraction facility was established at the University of Idaho with the assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA, USA. This research was sponsored by Space Missile and Defense Command (SMDC), contract No. DASG60-02-C-0084.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ3022). Services for accessing these data are described at the back of the journal.

References

- Brandenburg, K. (1998). DIAMOND. Version 3.0. Crystal Impact GbR, Bonn, Germany.
- Bruker (2002). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SMART (Version 5.630), SAINT-Plus (Version 6.45a) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bürger, H., Kneipp, K., Hobert, H. & Vogel, W. (1992). J. Non-Cryst. Solids, 151, 134–142.
- Feger, C. R., Schimek, G. L. & Kolis, J. W. (1999). J. Solid State Chem. 143, 246– 253.
- Hanke, K. (1966). Naturwissenschaften, 53, 273-273.
- Hanke, K. (1967). Naturwissenschaften, 54, 199–199.
- Hanke, K., Kupčik, V. & Lindqvist, O. (1973). Acta Cryst. B29, 963-970.
- King, S. E., Dietrich, H. B., Henry, R. L., Katzer, D. S., Moore, W. J., Philips, G. W. & Mania, R. C. (1996). *IEEE Trans. Nucl. Sci.* 43, 1376–1380.
- Leciejewicz, J. (1961). Z. Kristallogr. 116, 345-353.
- Lindqvist, O. (1968). Acta Chem. Scand. 22, 977-982.
- Nukui, A. (2001). J. Non-Cryst. Solids, 255, 293-295.
- Öveçoğlu, M. L., Özalp, M. R., Özen, G., Alten, F. & Kalem, V. (2004). Key Eng. Mater. 264–268, 1891–1894.
- Palmer, D. C. (2007). CrystalDiffract. Version 1.1.2. Crystalmaker Software Ltd, Oxfordshire, England.
 - Rajendran, S. & Mellen, R. (1987). J. Cryst. Growth, 85, 130–135.
 - Stockbarger, D. C. (1936). *Rev. Sci. Instrum.* **7**, 133–136.
 - Weil, M. (2006). Acta Cryst. E62, i246–i247.
 - Westrip, S. P. (2007). publCIF. In preparation.